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Abstract

The recent paper by Cooray etal introduced the folded logistic distribution. The moments properties given in the paper

appear too complicated. In this note, a simple formula is derived in terms of the well known Lerch function.
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The recent paper by Cooray et al.' " introduced a

novel distribution referred to as the folded logistic dis-
The probability density function (PDF)

and the cumulative distribution function (CDF ) of
this distribution are given as
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respectively, for x> 0, — o< < ©© and o> 0.

The moments E (X ) (where X is a random variable
with the PDF and the CDF specified by (1) and 2),

respectively ) are expressed as double infinite sums.

tribution.

and

In addition, separate expressions are given for 7 even
and 7 odd. We feel that these expressions are unnec-
essarily complicated. In this paper, we show that one

can derive a simple expression for E (X ) —applicable
for any »—in terms of the well known Lerch function

defined by
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folded logistic distribution. Lerch function. moments.

for| z|<< 1 and v#0, — 1, — 2, -~ We refer the
readers to Chapter 1 of Erdelyi et al."”” and Section
9. 55 of Gradshteyn and Ryzhik[ I for detailed proper-
ties of the Lerch function. Numerical routines for the

computation of (3) and (4) are widely available,
e. g. LerchPhi in Maple.

Theorem 1 gives the expression for E (X') for
any real 7~>0. Theorem 2 provides an equivalent ex-
pression for E (X ).

some special cases.

Corollaries 1 and 2 consider

Theorem 1. If X is a random variable with the
pdf and the cdf specified by (1) and (2), respective-

ly, then
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for any real = 0.

Proof. Usmg (2), one can write E(X') as
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Setting y= x/ 0, one can reexpress (6) as
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The result in (5) follows by using the definition of

the Lerch function given by (4). QED

Theorem 2. Under the conditions of Theorem 1,

an equivalent expression for E (X' ) is

EXD=—0d I+ 1) Li,|— exp[%]]

+ Lir[ exp[ g ]} (8)

for >0, where Li,(°) denotes the polylogarithm of
order 7 defined by

co A
Li,(z)= Z =
=1 k

Proof. Follows from (5) by using the fact that
Li,«(Z ):Z(D(Za r,l). QED

Corodlary 1. Under the conditions of Theorem

I, if 7 is an even integer then

EX)= dQin)B [lnw]
21
where i= J—1, w=—

exp (##/06) and By (°) de-
notes the Bernoulli poly nomial of order m defined by

Bm(x)*z 1+12<—1)" LR RS

Proof. follows from (8) by using the fact that
Li,(z)+Li, (1/z)=—(1/r ) Qix)'B, (Inz/
(2i ). QED

Corollary 2. Under the conditions of Theorem
1, the expected value of X{'s given by

EX)= t+ 20l 1+exp[ ?]}

Proof. Follows from (8) by using the fact that
Li; ()= —In(1—z). QED
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